Pre-training Molecular Graph Representation with 3D Geometry — Rethinking Self-Supervised Learning on Structured Data

Shengchao Liu^{1,2}, Hanchen Wang³, Weiyang Liu^{3,4}, Joan Lasenby³, Hongyu Guo⁵, Jian Tang^{1,6,7} ¹Mila, ²Université de Montréal, ³University of Cambridge, ⁴MPI for Intelligent Systems, Tübingen, ⁵National Research Council Canada, ⁶HEC Montréal, ⁷CIFAR AI Chair

Self-Supervised Learning & Molecular Property Prediction

For molecular property prediction:

	Accessibility	Information
2D Topology	Easy	Low
3D Geometry	Hard	High

Q: Can we find a smarter way to utilize 3D information to help augment the 2D representation?

A: Yes, and we propose Graph Multi-View Pre-training (GraphMVP).

- It uses **both** 3D and 2D in SSL **pre-training**.
- It uses only 2D info for downstream fine-tuning.

Existing Graph SSL

- Existing SSL on graph.
- Node-level
- Context-level
- Graph-level

SSL Pre-training	Graph	n View	SSL Category		
552 Tre duning	2D Topology	3D Geometry	Generative	Contrastive	
EdgePred [31]	\checkmark		\checkmark		
AttrMask [38]	\checkmark		\checkmark		
GPT-GNN [39]	\checkmark		\checkmark		
InfoGraph [71, 79]	\checkmark			\checkmark	
ContexPred [38]	\checkmark			\checkmark	
GraphLoG [88]	\checkmark			\checkmark	
GraphCL [91]	\checkmark			\checkmark	
JOAO [90]	\checkmark			\checkmark	
GraphMVP (Ours)	\checkmark	\checkmark	\checkmark	\checkmark	

Method: GraphMVP

• Mutual Information (MI) and Self-Supervised Learning (SSL)

$$I(X;Y) \ge \mathbb{E}_{p(x,y)} \left[\log \frac{p(x,y)}{\sqrt{p(x)p(y)}} \right]$$
$$= \frac{1}{2} \mathbb{E}_{p(x,y)} \left[\log p(x \mid y) \right] + \frac{1}{2} \mathbb{E}_{p(x,y)} \left[\log p(y \mid x) \right]$$

Contrastive SSL

• EBM-NCE $\mathscr{L}_{\mathsf{EBM-NCE}} = -\frac{1}{2} \mathbb{E}_{p_{\mathsf{data}}(y)} \Big[\mathbb{E}_{p_n(x|y)} [\log(1 - \sigma(f_x(x, y)))] + \mathbb{E}_{p_{\mathsf{data}}(x|y)} [\log\sigma(f_x(x, y))] \Big]$ $-\frac{1}{2}\mathbb{E}_{p_{\mathsf{data}}(x)}\left[\mathbb{E}_{p_n(y|x)}[\log(1-\sigma(f_y(y,x)))] + \mathbb{E}_{p_{\mathsf{data}}(y|x)}[\log\sigma(f_y(y,x))]\right]$

Generative SSL

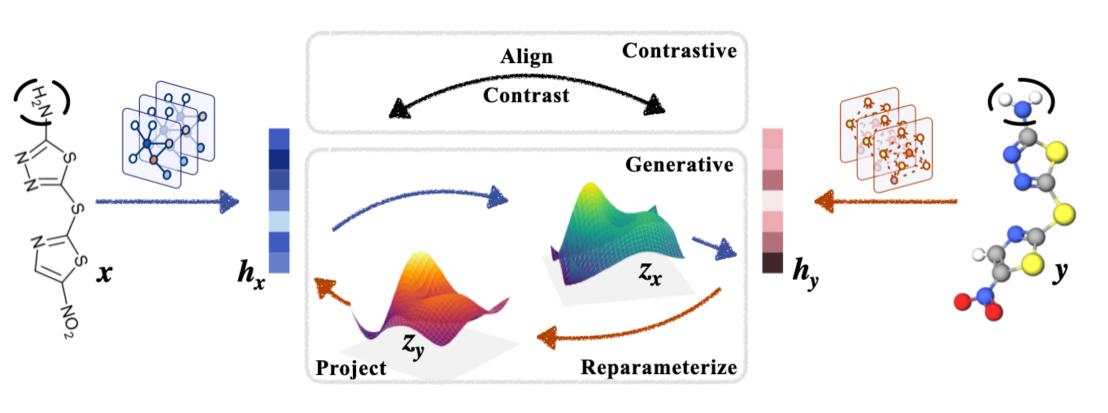
- Which generative model? VAE-like.
- Continuous & Structured data space
 - Variational Representation Reconstruction (VRR)

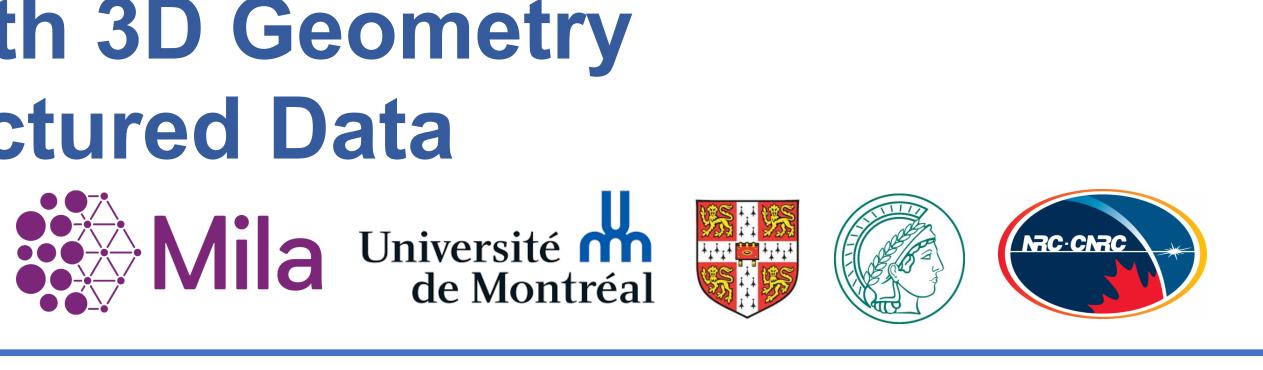
$$\mathscr{L}_{G} = \mathscr{L}_{VRR} = \frac{1}{2} \Big[\mathbb{E}_{q(z_{x}|x)} \Big[\|q_{x}(z_{x}) - SG(h_{y})\|^{2} \Big] + \mathbb{E}_{q(z_{y}|y)} \Big[\|q_{y}(z_{y}) - SG(h_{x})\|_{2}^{2} \Big] \Big] \\ + \frac{\beta}{2} \cdot \Big[KL(q(z_{x}|x) | |p(z_{x})) + KL(q(z_{y}|y) | |p(z_{y})) \Big]$$

This is SimSiam with randomness!

Multi-task Objectives

- Contrastive SSL and Generative SSL are complementary
- Inter-data and intra-data
- Local and global
- Objective: $\mathscr{L}_{GraphMVP} = \alpha_1 \cdot \mathscr{L}_{C} + \alpha_2 \cdot \mathscr{L}_{G}$





Experiments

- Backbone models: GIN for 2D, SchNet for 3D
- Pre-training dataset: GEOM
- Fine-tuning datasets: 8 binary classification datasets

<u>ـ</u> .									
Pre-training	BBBP	Tox21	ToxCast	Sider	ClinTox	MUV	HIV	Bace	Avg
_	65.4(2.4)	74.9(0.8)	61.6(1.2)	58.0(2.4)	58.8(5.5)	71.0(2.5)	75.3(0.5)	72.6(4.9)	67.21
EdgePred	64.5(3.1)	74.5(0.4)	60.8(0.5)	56.7(0.1)	55.8(6.2)	73.3(1.6)	75.1(0.8)	64.6(4.7)	65.64
AttrMask	70.2(0.5)	74.2(0.8)	62.5(0.4)	60.4(0.6)	68.6(9.6)	73.9(1.3)	74.3(1.3)	77.2(1.4)	70.16
GPT-GNN	64.5(1.1)	75.3(0.5)	62.2(0.1)	57.5(4.2)	57.8(3.1)	76.1(2.3)	75.1(0.2)	77.6(0.5)	68.27
InfoGraph	69.2(0.8)	73.0(0.7)	62.0(0.3)	59.2(0.2)	75.1(5.0)	74.0(1.5)	74.5(1.8)	73.9(2.5)	70.10
ContextPred	71.2(0.9)	73.3(0.5)	62.8(0.3)	59.3(1.4)	73.7(4.0)	72.5(2.2)	75.8(1.1)	78.6(1.4)	70.89
JOAO	66.0(0.6)	74.4(0.7)	62.7(0.6)	60.7(1.0)	66.3(3.9)	77.0(2.2)	76.6(0.5)	72.9(2.0)	69.57
GraphMVP	68.5(0.2)	74.5(0.4)	62.7(0.1)	62.3(1.6)	79.0(2.5)	75.0(1.4)	74.8(1.4)	76.8(1.1)	71.69

 Ablation study on objective function: each individual contrastive and generative SSL.

Table 5. Ablatic	n on the obj	cenve runer	.1011.
GraphMVP Loss	Contrastive	Generative	Avg
Random			67.21
InfoNCE only	\checkmark		68.85
EBM-NCE only	\checkmark		70.15
VRR only		\checkmark	69.29
RR only		\checkmark	68.89
InfoNCE + VRR	\checkmark	\checkmark	70.67
EBM-NCE + VRR	\checkmark	\checkmark	71.69
InfoNCE + RR	\checkmark	\checkmark	70.60
EBM-NCE + RR	\checkmark	\checkmark	70.94

Table 3: Ablation on the objective function

Findings and Conclusions

• Problem novelty:

- A novel research direction to utilize 3D representation to augment 2D representation, especially for structured data. • Technical novelty:
 - EBM-NCE: connects energy-based model (EBM) with SSL.
 - VRR: proposes a novel generative SSL; provides another viewpoint for non-contrastive SSL.
 - Contrastive SSL and Generative SSL are complementary.

Codes will be available at https://github.com/chao1224/GraphMVP Email: liusheng@mila.quebec, arXiv: https://arxiv.org/abs/2110.07728